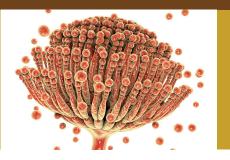


nufense

Mycotoxin Management Solutions

gold



Solutions for the Mycotoxin Challenges

Mycotoxins are secondary metabolites of low molecular weight produced by fungi, mostly by saprophytic moulds growing on a variety of feed and foodstuffs (Turner et al., 2009).

Contamination of feeds with mycotoxins is a worldwide problem with serious impact on livestock production. Mycotoxin -detoxifying agents are used to control their negative effects.

nufense

gold

- Thermally & Mechanically activated Aluminosilicate
- Dry Yeast Cell wall
- Specific enzymes DON, FUM, OTA, T-2 and ZEN
- Liver tonic

The mineral clay used is highly porous, thermally, and mechanically activated with a highly sorbitive behavior and enhanced hydrophilic (anti-diarrhea) and oleophilic (toxin-binding) activity.

Dry Yeast Cell Wall:
a premium yeast fraction rich
in β-glucans and mannanoligosaccharides (MOS).
It prevents colonization
of the GIT by pathogens,
stimulates the immune
activity of the phagocytic cells
and enhances the action
of beneficial bacteria.

In nufense gold are used biologically specific active enzymes and glucans that have the capability to bind and deactivate harmful mycotoxins Liver tonic: mycotoxins not only reduce animal performance, but they also cause significant liver damage. Certain mycotoxins have a strong hepatotoxic effect in chicken and hepatocarcinogenic effect in exposed animals. The liver tonic used in nufense gold based on Silymarin, is an antioxidant that protects liver from the free radical damage produced by mycotoxins.

Aiming to determine the mycotoxin detoxifying activity of **nufense gold** in broiler, layer and breeder feed, a mycotoxin eliminating analysis was carried out. Two pH values (pH=4.5, pH=7.5) were tested, simulating gastric and intestinal juice. In order to determine the mycotoxin eliminating efficiency of the product during the transition in poultry gastrointestinal tract, 6 incubation times were used (0,30,60,120,240 and 300 min). The mycotoxin concentration was calculated using HPLC-DAD chromatographic analysis.

Results:

- Strong adsorption efficiency: Aflatoxin concentration decreased by more than 95% for 30 min incubation time.
- High elimination efficiency: mycotoxins DON, FUM, OTA, T-2 and ZEN were eliminated by more than 90% in contrast with control diet.

Trilogy Results:

% Efficiency Incl. rate Toxin conc. AF1. ZEN 99.6 70.7 0.02% 0.20% 4000 ppb. 500 ppb

EURL Method: Adsorption of 4000 ppb AB1 with 0,02% product at pH 5.0

Dosage for all species: 1 kg /ton of feed

Note: Dosage depends on the mycotoxin risk level